Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset
نویسندگان
چکیده
Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users' privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified.
منابع مشابه
A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks
Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a dest...
متن کاملPredicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts
Spatial and temporal contextual information plays a key role for analyzing user behaviors, and is helpful for predicting where he or she will go next. With the growing ability of collecting information, more and more temporal and spatial contextual information is collected in systems, and the location prediction problem becomes crucial and feasible. Some works have been proposed to address this...
متن کاملA Study on Next Location Predictive Modeling using Mined Temporal Sequential Patterns as input to a Decision Tree
Knowledge about position of the participants is commonly used in location-based services and applications in smart environment, which need to know an approximated location of the users to provide a proper service. Furthermore, when users are moving in an environment doing tasks, knowledge of the next location or destination of those movements can be used to assist the system to give more accura...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملA Clustering K-Anonymity Scheme for Location Privacy Preservation
The continuous advances in sensing and positioning technologies have resulted in a dramatic increase in popularity of LocationBased Services (LBS). Nevertheless, the LBS can lead to user privacy breach due to sharing location information with potentially malicious services. A high degree of location privacy preservation for LBS is extremely required. In this paper, a clustering K-anonymity sche...
متن کامل